Junction Field Effect Transistor - significado y definición. Qué es Junction Field Effect Transistor
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Junction Field Effect Transistor - definición

TYPE OF FIELD-EFFECT TRANSISTOR
Junction Field-Effect Transistor; Junction gate field-effect transistor; JUGFET; Jfet; Uses of jfet; Junction gate FET; Junction-gate FET; Junction FET; Junction field-effect transistor; J-FET

Junction Field Effect Transistor      
<electronics> (JFET, Junction FET) A Field Effect Transistor in which the conducting channel lies between pn junctions in the silicon material. A pn junction acts as a diode, so it becomes conductive if the gate voltage gets reversed. (1997-02-24)
JFET         
The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers.
JFET         

Wikipedia

JFET

The junction-gate field-effect transistor (JFET) is one of the simplest types of field-effect transistor. JFETs are three-terminal semiconductor devices that can be used as electronically controlled switches or resistors, or to build amplifiers.

Unlike bipolar junction transistors, JFETs are exclusively voltage-controlled in that they do not need a biasing current. Electric charge flows through a semiconducting channel between source and drain terminals. By applying a reverse bias voltage to a gate terminal, the channel is pinched, so that the electric current is impeded or switched off completely. A JFET is usually conducting when there is zero voltage between its gate and source terminals. If a potential difference of the proper polarity is applied between its gate and source terminals, the JFET will be more resistive to current flow, which means less current would flow in the channel between the source and drain terminals.

JFETs are sometimes referred to as depletion-mode devices, as they rely on the principle of a depletion region, which is devoid of majority charge carriers. The depletion region has to be closed to enable current to flow.

JFETs can have an n-type or p-type channel. In the n-type, if the voltage applied to the gate is negative with respect to the source, the current will be reduced (similarly in the p-type, if the voltage applied to the gate is positive with respect to the source). Because a JFET in a common source or common drain configuration has a large input impedance (sometimes on the order of 1010 ohms), little current is drawn from circuits used as input to the gate.